当前位置: 【学术动态
Sparse (0,1) array and perfect phylogeny
日期:2018/12/20 9:22:21  发布:数理学院  浏览: 550

时间:2018年12月27日(星期四)  下午15:00-16:00

地点:数理学院教2楼108室


报告人: 吴耀琨(上海交通大学教授

摘要: A character on $X$ is a set of disjoint nonempty subsets of $X$. We say that a character on $X$ can be displayed on a tree $T$ if the leaf set of $T$ contains $X$ and that   the convex hulls of those parts of the character in $T$ are pairwise disjoint. A character system has a perfect phylogeny if they can be displayed on a common tree.  Each family of characters on $X$, say $\pi_1,\ldots,\pi_n$, naturally corresponds to an $n$-dimensional $(0,1)$ array of size $a_1\times \cdots \times a_n$, where $a_i$ is the number of parts of $\pi_i$, of which the $(t_1,\ldots ,t_n)$-entry is $1$ if and only if there is an element of $X$ lying in the $t_i$th part of $\pi_i$ for all $i=1,\ldots,n$. For each $(0,1)$ array, we propose an algorithm to associate with it a set of graphs. We show that a character system of size $n$ has a perfect phylogeny if and only if  its corresponding $(0,1)$ $n$-dimensional array is sparse in certain sense. When the character  system fulfils some special requirements, we demonstrate that our algorithm applied to the corresponding $(0,1)$ array produces all ``minimum" trees which can  display that character  system. In the course of this research, we define a series of sparsity measures for $(0,1)$ arrays and investigate the interconnection between the sparseness of different margins of a high dimensional $(0,1)$ array. This is joint work with Yanzhen Xiong.

    欢迎广大师生参加!

数理学院

2018-12-20

 【打印本页】 【关闭窗口】 

相关信息


普通高考招生电话:0512-68096117 研究生招生电话:0512-68093182

苏ICP备11028812号 苏公网安备 32050502000334号